Generating New Space-Filling Test Instances for Continuous Black-Box Optimization
نویسندگان
چکیده
منابع مشابه
Studies in Continuous Black-box Optimization
O ptimization is the research field that studies that studies the design of algorithms for finding the best solutions to problems we humans throw at them. While the whole domain is of important practical utility, the present thesis will focus on the subfield of continuous black-box optimization, presenting a collection of novel, state-of-the-art algorithms for solving problems in that class. Fi...
متن کاملRestarted Local Search Algorithms for Continuous Black Box Optimization
Several local search algorithms for real-valued domains (axis parallel line search, Nelder-Mead simplex search, Rosenbrock's algorithm, quasi-Newton method, NEWUOA, and VXQR) are described and thoroughly compared in this article, embedding them in a multi-start method. Their comparison aims (1) to help the researchers from the evolutionary community to choose the right opponent for their algori...
متن کاملA New Method for Generating Continuous Bivariate Distribution Families
Recently, it has been observed that a new method for generating continuous distributions, T - X family, can be quite effectively used to analyze the data in one dimension. The aim of this study is to generalize this method to two dimensional space so that the marginals would have T - X distributions. So, several examples and properties of this family have been presented. As ...
متن کاملThe Complexity of Generating Test Instances
Recently, Watanabe proposed a framework for testing the correctAbstract-1 ness and average-case performance of algorithms that purport to solve a given NP search problem efficiently on average with respect to some distribution on the instances. The idea is to randomly generate certified instances under some distribution that resembles the input distribution. Watanabe showed that unless RE = NE,...
متن کاملSurrogate-based methods for black-box optimization
In this paper, we survey methods that are currently used in black-box optimization, i.e. the kind of problems whose objective functions are very expensive to evaluate and no analytical or derivative information are available. We concentrate on a particular family of methods, in which surrogate (or meta) models are iteratively constructed and used to search for global solutions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Evolutionary Computation
سال: 2020
ISSN: 1063-6560,1530-9304
DOI: 10.1162/evco_a_00262